Author: John F. Lindner

  • Summer of ’19

    Due to the pandemic, the summer of 2019 was regrettably and unexpectedly my last Wooster summer research program, but the team was amazing. Niklas Manz and I obtained Sherman-Fairchild funding to work with Margaret McGuire ’20, Yang (Fish) Yu ’21, and Chase Fuller ’19 to computationally study reaction-diffusion phenomena.  All three of their projects have…

  • Chemistry Does General Relativity

    I hired Kiyomi from Hawai’i for our NSF REU summer program in spring 2020 amidst fears of the pandemic that eventually postponed the program two years. When she finally arrived in summer 2022, I had already retired from Wooster, where my last year was completely remote, classes via Teams, but several of those included Daniel.…

  • Magic Scroll

    When I bought my house, I knew I would soon need to replace its heat pump, which was almost 20 years old. Earlier this month, with my old pump laboring under a cold snap, I upgraded to a new version, which boasts a history of elegant inventions. Powered by electricity, heat pumps circulate a low-boiling-point…

  • All Engine(s) Running

    I asked Siri to wake me at 7:15 this morning so I could watch SpaceX’s second Integrated Flight Test of Super Heavy Starship, the biggest and most powerful rocket ever built. Unfortunately, my house suffered a rare power outage an hour or two earlier, so I found myself lying in bed watching the coverage on…

  • Diversity Improves Machine Learning

    For the last two years, the Nonlinear Artificial Intelligence Lab and I have labored to incorporate diversity in machine learning. Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers of artificial neural networks. In software, we constructed neural networks from neurons that learn their own activation functions (relating inputs to outputs), quickly…

  • Neural network does quantum mechanics

    A particle confined to an impassable box is a paradigmatic and exactly solvable one-dimensional quantum system modeled by an infinite square well potential. Working with Bill Ditto, Elliott Holliday and I recently explored some of its infinitely many generalizations to two dimensions, including particles confined to regions that exhibit integrable, ergodic, or chaotic classical billiard…

  • The Ringed Planets

    When I was a kid, Saturn was the ringed planet. But today, we know that all of the outer planets have rings. The James Webb Space Telescope has now imaged each of them in infrared revealing their distinctive structures, including Jupiter‘s very faint ring (located by the arrow and dashed curve). The planet images below…

  • Simplest Chaos

    The motion of one of the simplest dynamical systems, a torqued, damped, nonlinear pendulum, can be infinitely complicated. Consider a simple pendulum of length and mass rigidly connected to an axle of radius wrapped by a rope that hangs down one side with a mass climbing up and down it, as in the attached animation.…

  • Vampire Ein Stein

    Just a couple of months after announcing the remarkable discovery of a single shape that forces a non-periodic tiling of the plane, Smith, Myers, Kaplan, and Goodman-Strauss have announced an improved aperiodic monotile or ein stein. (Ein stein is “one stone” in German.) The hat and turtle shapes tile the plane only non-periodically, but with their…

  • The Temperature of the Vacuum

    Quantum field theory predicts that the temperature of empty space should depend on the observer’s motion, increasing proportionally with acceleration. Here I attempt an accessible introduction to this striking effect, related to Hawking radiation and discovered independently by Fulling, Davies, and Unruh, assuming only sophomore-level physics (including hyperbolic functions) with some assistance from Mathematica. Hyperbolic…

Recent Comments

Recent Posts

Categories

Archives

Meta