Newton’s Can(n)on

One of my favorite illustrations is the cannon thought experiment from volume three of Isaac Newton‘s Principia Mathematica. Johannes Kepler argued that planets orbit elliptically with Sol at one focus. Galileo Galilei argued that terrestrial bodies fall parabolically in space and time. Living in the next generation and standing on their shoulders, Newton realized that Kepler’s ellipses and Galileo’s parabolas were extremes of the same continuum, the Newtonian synthesis, which he dramatized by imagining a cannon on a tall mountain shooting cannon balls at increasing horizontal speeds: a falling apple orbits Earth (but collides with its surface); the orbiting Luna falls toward Earth (but its tangential velocity prevents a collision).

In Newton's famous thought experiment, subsuming both Galileo and Kepler, cannonballs shot at ever increasing horizontal speed eventually fall around Earth

In Newton’s famous thought experiment, subsuming both Galileo and Kepler,
cannonballs shot at ever increasing horizontal speed eventually fall around Earth

Low-resolution photograph of page 6 volume 3 of Newton's Principia, as it appears in the Voyager interstellar record now en route to the stars

Low-resolution photograph of page 6 volume 3 of Newton’s Principia,
as it appears in the Voyager interstellar records now en route to the stars

About John F. Lindner

John F. Lindner was born in Sleepy Hollow, New York, and educated at the University of Vermont and Caltech. He is an emeritus professor of physics and astronomy at The College of Wooster and a visiting professor at North Carolina State University. He has enjoyed multiple yearlong sabbaticals at Georgia Tech, University of Portland, University of Hawai'i, and NCSU. His research interests include nonlinear dynamics, celestial mechanics, and neural networks.
This entry was posted in Physics. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *