Distant Retrograde Orbit

The Artemis 1 mission’s Orion spacecraft has successfully entered and exited a distant retrograde orbit about Moon. DRO is a stable and easily accessible orbit requiring a low velocity change \Delta V. In DRO, Earth‘s non-negligible gravity contributes to a 3-body problem that makes the inertial space orbit non-Keplerian: an ellipse centered — not focussed — on Earth.

The attached animation, which I generated by numerically integrating the 3-body motion equations, displays a DRO in reference frames fixed relative to distant stars [left pane] and rotating with Moon about Earth [right pane]. From the north celestial hemisphere, Orion [red] orbits anti-clockwise relative to Earth [cyan], like our solar system’s planets, but clockwise (and hence retrograde) relative to Moon [white].

For Artemis 1, Orion spent almost a week in DRO, completing a half revolution about Moon (and a quarter revolution about Earth), and is currently returning to Earth. The crewed Artemis 2 will use a free return trajectory for safety, and future Artemis missions will use Near Rectilinear Halo Orbits to avoid Moon periodically eclipsing Earth.

Far from Earth [cyan], the Orion spacecraft [red] entered a distant retrograde orbit about Moon [white]. Relative to Earth [left pane] Orion orbits one way, but relative to Moon [right pane] Orion orbits the opposite way. (You may need to click to start the animation.)

Far from Earth [cyan], the Orion spacecraft [red] entered a distant retrograde orbit about Moon [white]. Relative to Earth [left pane] Orion orbits one way, but relative to Moon [right pane] Orion orbits the opposite way. (You may need to click to start the animation.)

From a distant retrograde orbit, a camera at the tip of an Orion solar panel photographs Earth and Moon, 2022 November 28.

From a distant retrograde orbit, a camera at the tip of an Orion solar panel photographs Earth and Moon, 2022 November 28.

About John F. Lindner

John F. Lindner was born in Sleepy Hollow, New York, and educated at the University of Vermont and Caltech. He is an emeritus professor of physics and astronomy at The College of Wooster and a visiting professor at North Carolina State University. He has enjoyed multiple yearlong sabbaticals at Georgia Tech, University of Portland, University of Hawai'i, and NCSU. His research interests include nonlinear dynamics, celestial mechanics, and neural networks.
This entry was posted in Astronomy, Exploration, Physics. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *